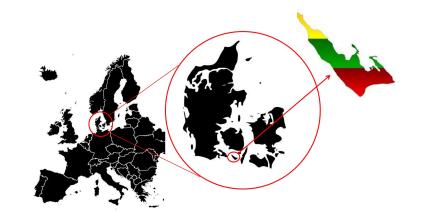


The E-ferry Ellen: A fully electric regional ferry

Halfdan Abrahamsen


Information Manager, Ærø EnergyLab Municipality of Ærø, Denmark

Email: hab@aeroekommune.dk

1. The E-ferry is powered by local wind turbines

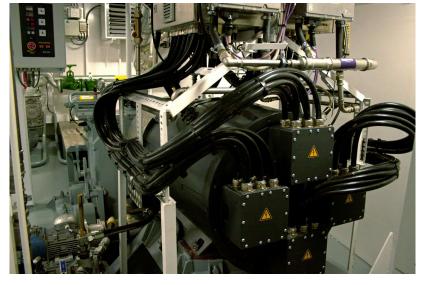
The E-ferry sails in southern Denmark, from the island of Ærø (Aeroe)

Wind produces 125-140 % of Ærø's electricity usage, electric ferry uses surplus

2. The ferry

- Municipal operator (Ærøfærgerne / Aeroe Ferries)
- Task: Demonstrate a replacement for diesel ferries
- Passengers: 147/196
- Vehicles: 31 cars
- Crew: 3/4 (no engineer)
- Cruise speed: 12,6 knots

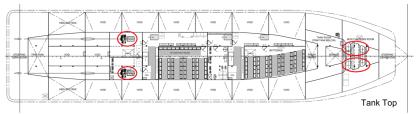
3. Batteries and engines



Batteries:

2 x 420 Lithium Graphite/NMC

Total capacity: 4 MW



Engines:

Main engines: 2 x 750 kW (1000 HP)

Bow thrusters: 2 x 250 kW

4. Achieving high frequency service

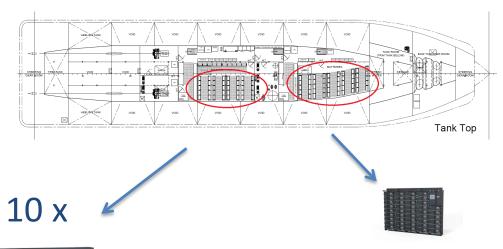
- Ramp-based charger
- 4 x 1 MW transformers
- 4 MW peak charging (1C)

Energy efficiency (transformer to propeller): 85 %

State-of-charge during the day:

5. Battery life time

Table 26: Calculation of life time battery capacity flow E-ferry prototype battery pack


Average Depth of Discharge (DoD)	39	%
Number of cycles down to SOH 80%	24.500	cycles
Average energy flow per cycle	1.600	kWh
Life time flow in sailing operation	39.200.000	kWh
Number of years in sailing schedule	11,74	Years

6. Achieving high frequency service

Special features:

- Specially developed for E-ferry
- DNV-GL type approved
- Scalable design
- Redundancy

- = 20 battery strings
- = 840 batteries

7. Battery modules

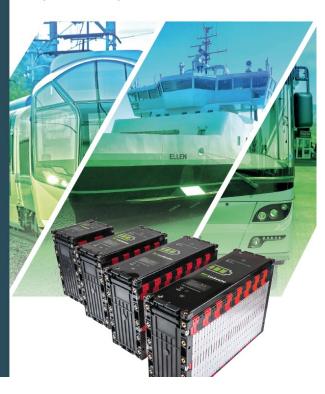
Pros:

- High energy density
- Fast charge/discharge
- Battery management
- Marine certification
- Commercial viability

Cons:

- Nickel, cobalt and manganese
- Unknown recycling potential

Second life:


- End-of-life: 80 % SoC capacity
- Potential for balancing local grid
- Depends on SoH

HIGH ENERGY BATTERIES FOR MOBILITY

Energy M2 Modules

(G-NMC)

8. Evaluation: Emissions

Annual reductions compared to the diesel replaced by the E-ferry:

CO₂: 2520 tonnes

 NO_x : 14.3 tonnes

 SO_2 : 1.3 tonnes

CO : 1.8 tonnes

The E-ferry also saves the environment from 0.5 tonnes of particulate matter (PM) each year

Bunker fuel:

"[After 2020] .. low-sulphur marine fuels will still account for ~250k deaths and ~6.4M childhood asthma cases annually" *Nature (2018)*

